Categorizing Triangles with a Static Base Value

Corresponding Material

Lesson 2: Categorizing Triangles with a Static Base Value

Discussion

In our computer program, we are using a base of length 200 with the following coordinates:

We must determine the type of triangle being drawn depending on the placement of the third point of the triangle. Remember, y values will only be positive.

Mathematical equations can be used to solve for side lengths or angles in a triangle. The following equations can be helpful when categorizing triangles:

Pythagorean Theorem (used only with right triangles):

$$
\text { hypotenuse }^{2}=\text { leg }^{2}+\text { leg }^{2}
$$

Trigonometry Equations:

$$
\sin (\theta)=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}
$$

Exercise

Fill in the conditions necessary to create the following triangle types. Then translate the conditions into text that will be understood in a Python program. Use these conditions in your if/else statement inside the determine_triangle_type function. The first condition has been completed for you.

Obtuse Triangle:

Image	Sample x, y Values	Condition(s)	Python Translated Condition
	$\begin{aligned} & (150,100) \\ & (-175,75) \\ & (105,50) \\ & (-120,35) \end{aligned}$	x must be greater than 100 or less than -100 y doesn't matter	$\begin{aligned} & x<-100 \text { or } x> \\ & 100 \end{aligned}$

Final Python translated condition for obtuse triangles:
\square

Acute Triangle:

Image	Sample $\mathbf{x , y}$ Values	Condition(s)	Python Translated Condition

Final Python translated condition for acute triangles:
\square

Right Triangle:

Image	Sample $\mathbf{x , y}$ Values	Condition(s)	Python Translated Condition

$(100,0)$			

Final Python translated condition for right triangles:
\square

Equilateral Triangle:

Image	Sample $\mathbf{x , y}$ Values	Condition(s)	Python Translated Condition

Final Python translated condition for equilateral triangles:

Conclusion

Fill in the if/else statement below with the conditions you've determined. Then enter these conditions into your program! Remember: Else statements do not have an associated condition!

```
if
    L__
    write_text("Obtuse Triangle", 20)
elif
```

\qquad

``` :
    write_text("Right Triangle", 20)
elif
    write_text("Equilateral Triangle", 20)
else:
    write_text("Acute Triangle", 20)
```

